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Abstract

We show the necessary and sufficient condition that a nonnegative matrix has a unique
positive eigenvector, where the analytic expression displaying the linear relations between
each remnant component andasic characteristic subvectaf the unique eigenvector is
discovered when the nonnegative matrix is reducible. As a result, we infer the exact necessary
and sufficient condition that the iteration matiik— 1N as a special nonnegative matrix has a
unique positive eigenvector whed — N is anM-splitting, which is applied to the condition
for the existence and uniqueness of a balanced growth solution for the Leontief dynamic input—
output model. Previous work in the field did not clearly involve the uniqueness of the balanced
growth solution. In this paper we develop the prior results. That is, we find the necessary
and sufficient condition that the Leontief dynamic input—output model has a unique bal-
anced growth solution. Finally, we obtain the necessary and sufficient condition for the
existence and uniqueness of both the balanced growth solution and the production prices
system. © 2001 Elsevier Science Inc. All rights reserved.
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1. Introduction

Frobenius [3, Section 11] first discovered the existence of the semipositive eigen-
vector of a nonnegative matrix, though his results were not stated according to the
current form. Schneider [7] and Carlson [2] discussed this subject in termshéf an
matrix. More recently, Victory [12] generalized Frobenius’ results by employing the
graph theoretic concepts. As a summary, Schneider [9] surveyed these issues. In this
paper, using the above known results, we show the necessary and sufficient condition
that a nonnegative matrik has a unique positive (right) eigenvect®r where the
uniqueness and the reducible case are emphasized. We find Tha ieducible,
thenR is based on #asic characteristic subvectat; which is a unique positive
eigenvector corresponding to the only one basic clags ahd each remnant com-
ponent ofRis the linear function of the component(s) ®f. The motivation comes
from some input—output economic problems in which a unique positive eigenvector
of a nonnegative matrix has to be solved.

Schneider [8] introduced the definition of @n-splitting of a real matrixA =
M — N and investigated the spectral properties of the iteration ma#rixN by
considering the relationships of the graphsAfM, N, and M 1N, where Mis
a nonsingulaM-matrix andN is a nonnegative matrix. Starting with Schneider’s
results, we deduce the elaborate necessary and sufficient condition that the iteration
matrix M ~1N as a special nonnegative matrix has a unique positive (right) eigenvec-
tor, which is motivated by the applications & 1N to the dynamic input—output
model. The dual case can be easy obtained from the above condition.

Szyld [10,11] studied the conditions for the existence of a balanced growth so-
lution for the Leontief dynamic input—output model. Besides, Marek and Szyld [5]
generalized both Schneider’s results in [8] and Szyld’s results in [10,11]. We develop
these results to yield the theorem on the uniqueness of the balanced growth solution.

In Section 2, the necessary and sufficient condition that a nonnegative Matrix
has a unique positive eigenveci®is revealed, where if is reducible, then a unique
positive eigenvector of the irreducible principal square submatrix corresponding to
the only one basic class dfassociated with a normal form is callethasic charac-
teristic subvectoof T since it is the basis dR. The definition of this new concept is
mainly due to the discovery of the analytic expressid#d);, which displays the lin-
ear relations between each remnant component and the basic characteristic subvector
of R.

In Section 3, applying the results of Section 2 and [8], we infer the accurate nec-
essary and sufficient condition that the iteration mauix'N has a unique positive
right eigenvector whem/ — N is an M-splitting. As its dual form, the necessary
and sufficient condition that the iteration matiik —1 has a unique positive left
eigenvector whef — N is anM-splitting is simply noted without details. So the
necessary and sufficient condition that bafti1 N has a unique positive right eigen-
vector andV M ~1 has a unique positive left eigenvector is obtained. Section 3 is the
foundation of Sections 4 and 5.
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In Section 4, we first present the definition of the uniqueness of a balanced growth
solution for the Leontief dynamic input—output model. Employing the outcome in
Section 3, we derive the elaborate necessary and sufficient condition for the existence
and uniqueness of a balanced growth solution for the Leontief dynamic input—output
model, whose economic meaning is very exact.

Section 5 is an economic consequence of Corollary 3.1.

Let A, = and < denote conjunction, implication and equivalency, respectively.
Let ¢ stand for the empty set. Let O be zero or zero vector or zero matrix. The vector
or matrixA > 0 means thad is semipositive, i.e., each entryAfs nonnegative, and
at least one entry is positive. The vector or mattixs>> 0 means thaA is positive,

i.e., each entry of is positive. ByA! we indicate the transpose of vector or matrix
A. Letp(A) be the spectral radius of matr& The unit matrix is symbolized bly
The meaning that a square matfxhas auniqueeigenvector corresponding to the
eigenvalue., or the vector is ainique eigenvector of a square matixassociated
with the eigenvalue,, is that the dimension of the eigenspateis one.

2. Necessary and sufficient condition that the nonnegative matrix hasa unique
positive eigenvector

In this section we always assume without loss of generality that a nonnegative
n x n matrix T has a (lower triangular) Frobenius normal form

T11 0
o) T

r=| - 2.1)
Trl Tr2 e Trr

Lemma2.1. LetR be a semipositivgight) eigenvector of T associated with{T').

For the following2r + 2 conditions:

(pVvjeld,....,i—L1i+1,....r}, o) =pT;) > ,O(Tjj)fOI'i =12,...,
r;

(ii;) R has a subvectoR; which is a unique positive eigenvector Bf, and each
remnant positive componef(if there exists)f R is the linear function of the
component(spf R; fori = 1,2, ..., r;

(i) T has only one final class

(iv) Ris positive and unique;

we have

@ ()= iy, i=1,2,...,r;

(2) [(i1) A ()] & (iv).

Proof. Leti = p(T). Asis well known, the semipositive eigenvece= (R}, th,
..., RHt exists, wherer; is the subvector oR corresponding to formula (2.1) for
i=12,...,r.
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We prove (1). Obviouslyi;) impliesr > 2. By [4, Lemma 6.2],R,, = 0 (m =

1,...,i—1), andR; is a unigue positive eigenvector @f; associated with. =
p(T;;) sinceT;; > 0is irreducible. Moreover, if < r, then
k-1
Ry = (A I — Tkk)_lszjRj k=i+1,...,r), (2.2)

J=t
where/; is the proper identity matrix for = 1,2, ..., r, and by [1, (2.7) Theorem,
p.141) (A1 — Tw)~1 > 0 since Ty is irreducible or a nonnegativesd 1 matrix for
k=i+1,...,r. Next we prove that if < r, then each component df; is the
linear function of the component(s) & fork =i +1,...,r.
If i <r,byformula (2.2), we have

Ris1= (Mip1— Tip1iv1) ' TisaiRi. (2.3)
Ifi <r—1,lethg =i, we still require proving

Ry = Ody — Tag) ™t
a—1—i a—j a—1

RN D DD S @4

a
Tai +
j=1 | hh=i+1 bj=bj_1+1

1
< [TO2s, = Top) oo,y | { R (@a=i+2.....7)
x=j

by means of mathematical induction on
Let Fp = Wy — Tir) ™Y, k=i +1,...,r. By formulas (2.2) and2.3); we have
Rit2=Fit2(Ti+2iRi + Tit2i+1Ri+1)

=Fi12(Tiv2i + Tiy2i+v1FitaTiv10) R;,

i.e., formula(2.4); holds ifr =i 4+ 2. Suppose that formul@.4); holds if r = m,
ie.,

a—1—i a—j a—1 1

R.=F, | T, + Z Z Tub,-HFbebbu R;

j=1 b1=i+1 bj=b;j_1+1 x=j
@=i+2.....m). (2.5)

We only need to prove

m—i (m+1—j m 1
Ryps1=Fpy1|Turit Y | Y o Y Ty [ [ FouTowno o | | Ri-
j=1\b1=i+1 bj=bj_1+1 x=j

By formulas (2.2) and2.3);, we have
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m
Ru+1 = Fny1 | Tnt1iRi + TuvrivaFiaTiv1iRi + Z Tin+1aRa

a=i+2
Therefore, by formula (2.5), we only require proving
a—1—i a—j a—1 1
Z Tm+1uF Z Z ttt Z Tubj 1_[ Fbx Tbxbxfl
a=i+2 j=1 b1=i+1 bj=bj_1+1 x=j

m+1—j

ZZ Z Z Tn+1b; HFbebbxl . (2.6)
j=2

b1=i+1 b h, 1+1
Let

Y(he,he1, ..., h1) = Tuyan, Fn, Thoh,_y - thThzththhlh

wherei + 1< hy, hy_1+1< hy,s=2,...,€,h, <m,2< m — i. Then for-
mula (2.6) is equivalent to

m a—=1—-i a—j a—1
YD > o Y Yabj.....b)
a=i+2 j=1 bi=i+1  bj=bj 1+1

m—i m+1—j m

=33 Y Yo b1 by 2.7

j=2b1=i+1 b bl 1+1

Itis not difficult to prove formula (2.7). Hence formuia.4); holds. Formulas2.3);
and(2.4); show that ifi < r, then each component &, is the linear function of the
component(s) oR; fork =i + 1, ..., r. The proof of (1) is completed.

We prove (2). Suppose thét) A (iii) holds. By the proof of (1)(i1) implies that
R1 > 0, andA is a simple root off. HenceRis a unique eigenvector dfassociated
with A. Thus we only require proving; > 0,k =2, ..., r.Since (A} — Tir) 1>
0,k =2,...,r, the result follows from (iii) and formula (2.2).

Inversely, let (iv) hold. We only need to complete the proof that the reduced graph
of AI — T has precisely one singular vertex, which is also the only final vertex. By
[9, (3.5) Corollary], since there exists a positive vedmatisfying(Al — T)R = 0,
the set of singular vertices is equal to the set of final vertices. So each singular vertex
is distinguished and hence by [9, (3.1) Theorem], the nullspaté ef T has a semi-
positive basis satisfying [9, (3.2)]. The uniquenesRaofieans that the dimension of
the nullspace of.I — T is one. Thus the above vertex set has only one element. The
proof of (2) is completed. O

Remark 2.1. In the proof of result (1), formulag.3); and (2.4); are important.
As compared with formula (2.2), formula®.3); and (2.4); thoroughly show the
linear relations between each componentRpfand the component(s) ak; for
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k=i+1,i+2,...,r,i =1,2,...,r — 1. HenceRr; plays a basic role in the semi-
positive eigenvectoRr.

Definition 2.1. Suppose > 2 in the normal form (2.1) oT. If 3i € {1,2,...,r}
such thatp(T) = p(T;i) > p(T}j), j=1,...,i—1,i+1,...,r, then a unique
positive eigenvectorR; of T;; is called abasic characteristic subvectaf T cor-
responding to this normal form.

Theorem 2.1. Let T be a nonnegative matrix of order n. Then the following condi-
tions are equivalent:

(i) T has precisely one basic classhich is also the only final class

(i) T has a unique positive eigenvectar R

where if T is reduciblethen T corresponding to the normal forg@.1) has a basic
characteristic subvectoR;, and each remnant component of R is both positive and
the linear function of the componés} of R1, whose analytic expression is formula
(2.3)1 0r (2.4).

3. Spectral propertiesof theiteration matrices

In this section we always assume thatthe » real matrixM — N is a nontrivial
M-splitting, i.e.,M is a nonsingulaM-matrix andN is a semipositive square matrix.
Also, we assume without loss of generality that— N has a Frobenius normal form

My1— N11 0
M1 — N21 M2 — N2

M—N = ) ) . . (3.1)
Mrl_er MrZ_NrZ Mrr _Nrr

Thus, similarly to formula (3.1)M 1N has the corresponding (lower triangular)
partition, where the main diagonal bIoMk‘klNkk may be reducible by [8, Lemma
34]fork=1,...,r.

Lemma3.1l. If M — N that has only one final class is reducibtmdp(M{lan) >
p(M,.le,»i),i =2,...,r, then M~IN is reducible and it has exactly one basic
class,which is also the only final class.

Proof. From [6, Theorem 4.3, p.160M 11 is anM-matrix. ThusMy1 — N11 is a
nontrivial M-splitting, andMl‘llNll andM 1N have the same basic class(es) since
p(M'N11) > p(M;*Nii),i = 2, ..., r. By [8, Lemma 3.4]M 7' N11 has exactly
one basic class, which is also the only final classi\QTllNll. HenceM 1N has
exactly one basic class, which is also a final clas#foftN. To establish that it is
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the only final class oM ~1N, let pbe any element in the final classml‘llNll. Since
this class is basiq is a vertex of a nonempty circuit of the graptiM —1N). For
Vq € {1,2,...,n}, g must have access fin the graphl"(M — N), since M— N
has only one final class. The result now follows from [8, Theorem 2.8].

Lemma3.2. If M — N that has only one final class is reducibend3j {2, ..., r}
such thato (M ;' N11) < p(Mj_lej /), then
(i) M~IN has at least two basic classes;
or
(i) M—1N has at least two final classes:;
or
(i) abasic class oM ~1N is not final.

Proof. Suppose that conclusions (i) and (ii) do not hold. TMHINM must contain
the only final class oM ~*N. Since p(M'N11) < ,O(Mj_lejj), M7 N11 does not
contain the only basic class  ~1N. Thus conclusion (iii) holds. O

From [8, Lemma 2.4 and Corollary 2.6], we can easy observe thddtif N has
at least two final classes théfi—1N has also at least two final classes.

Theorem 3.1. M~1N has a unique positivéight) eigenvector R if and only if
(1) M — N isirreducible where

(i) if each column of N has at least one positive entingn ~1N is irreducible;

(i) if N has at least one entire column of zertisen the reduciblé/ —1N has a
basic characteristic subvectaR, corresponding to the only basic class of
M~1IN, and each remnant component of R is the linear function of the com-
ponent(s)f Ry;

or

(2) M — N that has only one final class is reduciblend p(M{;'N11) > p(M;;*
Ni»), i =2,...,r, where the reduciblé/—1N has a basic characteristic sub-
vector R1 corresponding to the only basic class of b(Mi‘llNll and M~ 1N,
and each remnant component of R is the linear function of the compsineft
R1.

Proof. From [8, Lemma 3.4], Lemma 3.1 and Theorem 2.1, we can obtain “If".
From Lemma 3.2 and the above observation, as well as Theorem 2.1, we can obtain
“Only If”. O

We do not state the dual form of Theorem 3.1 since it is easy to obtain the du-
al case from this theorem, where the iteration matrix becom&s 1, whose left
eigenvector is considered.
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Corollary 3.1. Both M~1N has a unique positive right eigenvector R aNd/ 1
has a unique positive left eigenvector L if and onlyfif— N is irreducible where
(i) if each column of N has at least one positive entignM ~1N is irreducible

(i) if each row of N has at least one positive entityen N M1 is irreducible

(iii) if N has at least one entire column of zerdisen the reducible "IN has a
basic right characteristic subvectdt; corresponding to the only basic class of
M~IN, and each remnant component of R is the linear function of the compo-
nent(s)of Rq;

(iv) if N has at least one entire row of zerdken the reduciblev M1 has a basic
left characteristic subvectadk, corresponding to the only basic class/oM 1,
and each remnant component of L is the linear function of the comp@nent
Lo.

Proof. SinceN M ~1is the dual form of 1N, “If"is clear. We prove “Only If”. If
M — N is reduciblep(MN11) > p(M;;*N,,) andp(M;AN,,) = p(N,y M%) >
p(N1uMyH) = p(MtN1y) are contradictory. O

4. Necessary and sufficient condition that the Leontief dynamic input—output
model has a unique balanced growth solution

It is known that if no change in the technology is assumed over time, then both
discrete and closed Leontief dynamic input—output model of an economy is

(I = A) Xk = B(Xk11 — Xi), (4.1)

whereA > 0 andB > 0 are the intermediate input coefficient matrix and the capital
input coefficient matrix, respectively(A) < 1 hencgl — A)~! > 0 exists, andX,

is the column vector of gross output at time perioddn important solution of this

model is the so-called “balanced growth solution (BGS)”, i.e., this solution means
that the gross output of each sector increases by a constant percentage per unit of
time, the mutual proportions in which various sectoral products are produced remain
constant, i.e.,

Xi=A+8x >0, (4.2)

wheres > 0 is called thebalanced growth rat®f the economy system, antlis a
column vector of gross output.

Definition 4.1.  Let the setH = {positive vector X; = (1+ 8)*X|(I — A)X; =

B(Xik+1— Xp)}

(i) If H + ¢, then model (4.1) is called to haveBGS X, = (1+ 8)XX, or X =
(14 8)kX is said to be 8GSof model (4.1).
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ii Xr=(148X* € H, such thalVXy € H = X; = aX;) holds, wherex

i) If 3XF = (14 &)k x* h thatv #) holds, wh
is a positive number, then model (4.1) is called to havuenmue BGSX; =
(14 8)*X*, or X; = (1+ §)*X* is said to be ainique BGf model (4.1).

Example4.1. Let the intermediate input coefficient matrix and the capital input
coefficient matrix of an economy be respectively

0 0 0 5 0 0
A=|0 05 O and B=|( 0 25 0.
03 0 02 04 0 Q8

ThenX; = 1.2(32, o, 19} satisfies model (4.1). Thus, model (4.1) of this econo-
my has a BGSX;, = 1.2¢(32, ¢, 19}, and the balanced growth rate of the economy
is 0.2. Sinces can be an arbitrary positive numbef;, = 1.2¢(32, 0, 19} is not a
unique BGS, i.e., model (4.1) of this economy has infinitely many BGSs.

Example4.2. Let the intermediate input coefficient matrix and the capital input
coefficient matrix of an economy be respectively

0O 0 O 5 0 O
A=101 0 O and B=( 0 0 O0].
0O 0 02 04 0 Q8

Then X; = 1.2¢(40,4,5)" satisfies model (4.1). Thus model (4.1) of this economy
has a BGS X = 1.2¢(40, 4, 5)!, and the balanced growth rate of the economy is 0.2.
Afterward we shall prove that; = 1.2¢(40,4,5)! is a unique BGS.

Clearly, formula (4.2) satisfies model (4.1) if and onlyif— A)~1BX = (1/8)X,
wheres = 1/p[(I — A)~1B] by [1, (1.12) Corollary, p.28]. Thus we have:

Proposition 4.1. Model (4.1) of an economy has @ainique)BGS if and only if the
semipositive square matrif — A)~1B has a(unique)positive eigenvector.

Proof. We only require proving the case of uniqueness.

[Model (4.1) has a unique BGS]
& [3X] = (14 8 X* € H suchthalVX; € H = X; = aX})]
& (XF = (14 8)FX*satisfies model (4.1),
and [(formula (4.2) satisfies model (4.1))
= (14 8)*X = a(1+ ) X*]}
& {(I—AIBX* = (1/8) X,
and[(/ — A)'BX = (1/8)X = X = aX*]}
& [(I — A)~! B has a unique positive eigenvector] [0
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From Proposition 4.1, whetV — A)~1B has a positive eigenvectdt we can
adjustXo, the column vector of the initial gross output, such thigt= o« X, where
« is a positive number, thekig becomes a configuration vector of gross output that
enables the economy to grow at the balanced growth raté(L— A)~1B]. For
convenience sake we call the readjusiagto be abalanced growth configuration
vector of the economy.

We consider Examples 4.1 and 4.2 again. For Example 4.1,

5 0 O
I-A1B=| 0 5 0|, pld-A"1B]=5.
2375 0 1

Since (32, 0, 19§ is a nonunique positive eigenvector of — A)~1B associated
with 5, X; = 1.2¢(32, ¢, 19} is a nonunique BGS of model (4.1), whekg) =
(32, 0, 19} is a balanced growth configuration vector of the economy.

For Example 4.2,

5 0 O
(I-A)71B=|05 0 0|, plI—A"'B]=5.
05 0 1

Since (I — A)~1B has exactly a basic class, which is also the only final class,
(I — A)~1B has a unique positive eigenvect@t0,4,5)! by Theorem 2.1. Thus
model (4.1) has a unique BGS; = 1.2(40,4,5)! by Proposition 4.1, where
Xo = (40,4, 5)!is a balanced growth configuration vector of the economy.

Szyld researched the conditions for the existence of the BGS, but the uniqueness
was not explicitly involved (cf. [10,11]). He first presented the following assumption:
“Each column of the matriB has at least one nonzero entry”. Under the hypoth-
esis he proved that “G= (I — A)~1B is irreducible if and only if the sunC =
A + Bisirreducible”. Thus, the BGS exists whdn+ B is irreducible. In fact, since
(I — A)~1Bisirreducible, the BGS not only exists but is unique by Theorem 2.1 and
Proposition 4.1. Obviously, the condition thét+ B is irreducible and each column
of the matrixB has at least one nonzero entry is not a necessary, but a sufficient
condition that model (4.1) has a unique BGS. For instance,

5 0 O
A+B=|01 0 O
04 0 1

is reducible, and each entry of the second column in the mRtigxzero in Example
4.2, but model (4.1) of this economy has a unique BGS.

Moreover, for the reduciblel — A)~1B, Szyld [10, Theorem 2] gave a necessary
and sufficient condition for the existence of the BGS. Actually, employing the graph
theoretic concepts, this theorem is equivalent to [1, (3.10) Theorem, p.40] or [9, (3.5)
Corollary]. Evidently, wherg > 2 in [10, Theorem 2], i.e(/ — A)~1B has at least
two both basic and final class€d, — A)~1B cannot have aniquepositive eigen-
vector by Theorem 2.1. Hence, this necessary and sufficient condition cannot ensure
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the BGS to be unique. For instance, we consider Example 4.1 d@aind) 1B has
exactly two both basic and final classes. It is known that model (4.1) of this economy
has infinitely many BGSs.

Next, using the new results founded in Section 3 of this paper, we can completely
solve the above problems. Namely, we can find the necessary and sufficient condition
and its exact economic meaning that the Leontief dynamic input—output model has
a unique BGS. Certainly, some stricter restricted conditions, such as “Each column
of the matrixB has at least one nonzero entry” and 4AB is irreducible”, will be
relaxed.

First, we give an economic explanation of the semipositive mdirix (I —
A)1B = (uij)nxn, Where Ais the intermediate input coefficient matrix in value
terms, andB = (b;;).xx iS the capital input coefficient matrix in value terms. Let
V = (v1,v2,...,v,) be the value-added rate (i.e., value-added per unit of gross
output value) row vector, and |t = EB = (g1, g2, - - -, g») be the capital input
rate row vector, wher& = (1,1, ..., 1). Hence

n
8= bij
i=1

is the gross capital input per unit of gross output value of sg¢dtorj = 1,2, ..., n.
ThenVU = E(I — AY(I — A" 1B=EB =G,i.e,

n
Zviuijzgj (j=1,2,...,n).
i=1

Thus
0gj
av,'
i.e.,u;; measures the rate of change of the capital input rate of siwiitin respect
to a change in the value-added rate of sect®o U = (I — A)~1B can be called
the linked matrix or multiplier matrix between capital input rate and value-added
rate as with Leontief inversé/ — A)~1 can be called the linked matrix or multiplier
matrix between gross output and final output.

Obviously, we can directly obtain the necessary and sufficient conditioithat
A)~1B has a unique positive eigenvector from Theorem 2.1, (les A)~1B has
exactly a basic class, which is also the only final class. The economic meaning of
this necessary and sufficient condition, however, is not clear. Hence, in order to find
the necessary and sufficient condition that has a both evident and accurate economic
interpretation we have to employ Theorem 3.1.

LetM =1 — AandN = B. Then M— N is irreducible if and only ifA + B is
irreducible. In economic terms the irreducibility af+ B means that each sector of
the economy depends on all others directly or indirectly for either its intermedi-
ate products or its capital. Corresponding to a (lower triangular) Frobenius normal
form, the reducibility ofA + B means that the economy can be divided ints 2

0<u;j = i,j=1,2,...,n),
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subeconomiesy, So, ..., S, by the interdependence among the intermediate prod-
ucts and the capital, each sector$fdepends on all others ify, directly or indi-

rectly for either its intermediate products or its capitalSphas only one sector for
k=1,2,...,r. Also, if the condition thatd + B has only one final class is added,
this means thas; demands neither any intermediate product nor any capital from
S1,...,8;-1, but S; supplies either the intermediate products or the capital to at
least one subeconomy withf, ..., S;_1 fori =2, ..., r. The economic meaning

that each column (row) d8 has at least one positive entry is that each sector of the
economy demands (supplies) some capital. The economic meanimjthant least

one entire column (row) of zeros is that there exists at least one sector that does not
demand (supply) any capital in the economy. Thus, by Proposition 4.1 and Theorem
3.1, we have:

Theorem 4.1. The Leontief dynamic input—output mod@dél1) has a unique BGS if

and only if

(1) each sector of the economy depends on all others directly or indirectly for either
its intermediate products or its capitalvhere

(i) if each sector demands some capithlen the linked matrix between capital
input rate and value-added rat¢/ — A)~1B, is irreducible;

(ii) if there exists at least one sector that does not demand any catpitad the
reducible (I — A)~1B has a basic characteristic subvector which is a sub-
vector of a unique balanced growth configuration vector of the econand/
each remnant component is the linear function of the comp@s)eot the
subvector;

or

(2) the economy can be divided inta> 2 subeconomie$s, So, ..., S, by the in-
terdependence among the intermediate products and the cagéteh sector of
Sk depends on all others iy directly or indirectly for either its intermediate
products or its capitalpr S; has only one sector fdr= 1,2, ..., r, S; demands
neither any intermediate product nor any capital frém . . ., S;_1, but S; sup-
plies either the intermediate products or the capital to at least one subeconomy
within S, ..., S;—1fori =2, ..., r,andS; as a subeconomy has a unique BGS
whose balanced growth rate is less than thatSpif S; as a subeconomy has
also a unique BGSi.e., {1/pl[(/1 — A1) Buil} < {1/pl(1i — Ai) "' By} if
pl(l; — A;i)~1B;i1 > 0fori =2, ..., r, where the reducibl¢/ — A)~1B has
a basic characteristic subvector corresponding to the only basic class of both
(I1 — A11)~1B11 and (I — A)~1B, which is a subvector of a unique balanced
growth configuration vector of the econonaynd each remnant component is the
linear function of the compones) of the subvector.

Proof. We only need to prove tha; as a subeconomy has a unique BGS if and
only if p[(Ix — Agx) 1Bl > 0,k =1,2, ..., r. Clearly, the result follows from
Proposition 4.1, Theorem 2.1 and [8, Lemma 3.4]
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5. Necessary and sufficient condition for existence and uniqueness of both BGS
and production prices

It is known that the input—output price model of an economyis- PA + D,
where P > 0 is the price row vectord > 0 the physical intermediate input coef-
ficient matrix, andD > O the row vector of value-added per unit of physical gross
output. The so-called “production prices” means that the economy has a uniform cap-
ital return rate to each sector, i.€,,= PA + ¢ P B, which is equivalent t®° B(I —

A)~1 = (1/¢)P, whereB > 0 is the physical capital input coefficient matrix=
1/p[B(I — A)~1] > 0O'is called the uniform capital return ratef the economy.

As the dual form of Section 4, we have the similar results for the existence and
uniqueness of the production prices, whereB(I — A)~1 ande correspond tX,

(I — A)~1B ands, respectively. Here we do not express these results, but give an
economic explanation of the semipositive matilix= B(I — A)~1 = (wij)nxn that

is the dual matrix oV = (I — A)"1B. Let F = (f1, fo, ..., f,)! be the final de-
mand column vectoX = (x1, x2, .. ., x,,)! the gross output column vector, akid=

BX = (k1, ko, .. ., k,)! the capital supply column vector, where

n
k,’ = Z bijx]‘
j=1

is the gross capital supply of secipfori = 1,2,...,n. ThenWF = B(I — A)~1
F=BX=K,ie,

n
Zwi./fj =k (=12,...,n).

j=1
Hence
Ok;
Og i = .,.21,2,..., )
Wi j of, @ n)

i.e.,w;; measures the rate of change of the capital supply of sewiitin respect to a
change in the final demand of sectoBo W = B(I — A)~! can be called thinked
matrix or multiplier matrix between capital supply and final demand

By Corollary 3.1 and Proposition 4.1, we have:

Theorem 5.1. In an economy both the Leontief dynamic input—output model has a
uniqgue BGS and there exists a unigue production prices system if and only if each
sector of the economy depends on all others directly or indirectly for either its inter-
mediate products or its capitalvhere
(i) if each sector demands some capitdilen the linked matrix between capital
input rate and value-added rat¢/ — A)~1B, is irreducible
(i) if each sector supplies some capijt#hen the linked matrix between capital
supply and final demand (I — A)~1 isirreducible
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(iii) if there exists at least one sector that does not demand any cattital the
reducible (I — A)~1B has a basic right characteristic subvector which is a
subvector of a unique balanced growth configuration vector of the ecanomy
and each remnant component is the linear function of the comp@)erfithe
subvector;

(iv) if there exists at least one sector that does not supply any cafitah the re-
ducibleB(I — A)~1 has a basic left characteristic subvector which is a subvec-
tor of a unique production prices configuration vector of the econ@msg each
remnant component is the linear function of the compaisgof the subvector.
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